A Priori $L_2 $ Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations
- 1 September 1973
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Numerical Analysis
- Vol. 10 (4) , 723-759
- https://doi.org/10.1137/0710062
Abstract
Summary:The Rothe-Galerkin method is used for discretization. The rate of convergence in $C(I, L_p(G))$ for the approximate solution of a quasilinear parabolic equation with a Volterra operator on the right-hand side is established
Keywords
This publication has 10 references indexed in Scilit:
- Functional Analysis and Approximation Theory in Numerical AnalysisPublished by Society for Industrial & Applied Mathematics (SIAM) ,1971
- Galerkin Methods for Parabolic EquationsSIAM Journal on Numerical Analysis, 1970
- Rayleigh‐Ritz‐Galerkin methods for dirichlet's problem using subspaces without boundary conditionsCommunications on Pure and Applied Mathematics, 1970
- Approximation Theory of Multivariate Spline Functions in Sobolev SpacesSIAM Journal on Numerical Analysis, 1969
- $L^\infty $-Multivariate Approximation TheorySIAM Journal on Numerical Analysis, 1969
- Ein Kriterium für die Quasi-Optimalität des Ritzschen VerfahrensNumerische Mathematik, 1968
- Piecewise Hermite interpolation in one and two variables with applications to partial differential equationsNumerische Mathematik, 1968
- L-SplinesNumerische Mathematik, 1967
- Numerical methods of high-order accuracy for nonlinear boundary value ProblemsNumerische Mathematik, 1967
- A priori estimates for the solutions of difference approximations to parabolic partial differential equationsDuke Mathematical Journal, 1960