XHas2 activity is required during somitogenesis and precursor cell migration inXenopusdevelopment
Open Access
- 15 February 2006
- journal article
- Published by The Company of Biologists in Development
- Vol. 133 (4) , 631-640
- https://doi.org/10.1242/dev.02225
Abstract
In vertebrates, hyaluronan biosynthesis is regulated by three transmembrane catalytic enzymes denoted Has1, Has2 and Has3. We have previously cloned the Xenopus orthologues of the corresponding genes and defined their spatiotemporal distribution during development. During mammalian embryogenesis, Has2 activity is known to be crucial, as its abrogation in mice leads to early embryonic lethality. Here, we show that, in Xenopus, morpholino-mediated loss-of-function of XHas2 alters somitogenesis by causing a disruption of the metameric somitic pattern and leads to a defective myogenesis. In the absence of XHas2, early myoblasts underwent apoptosis, failing to complete their muscle differentiation programme. XHas2 activity is also required for migration of hypaxial muscle cells and trunk neural crest cells (NCC). To approach the mechanism whereby loss of HA, following XHas2 knockdown, could influence somitogenesis and precursor cell migration, we cloned the orthologue of the primary HA signalling receptor CD44 and addressed its function through an analogous knockdown approach. Loss of XCD44 did not disturb somitogenesis, but strongly impaired hypaxial muscle precursor cell migration and the subsequent formation of the ventral body wall musculature. In contrast to XHas2, loss of function of XCD44 did not seem to be essential for trunk NCC migration, suggesting that the HA dependence of NCC movement was rather associated with an altered macromolecular composition of the ECM structuring the cells' migratory pathways. The presented results, extend our knowledge on Has2 function and, for the first time, demonstrate a developmental role for CD44 in vertebrates. On the whole, these data underlie and confirm the emerging importance of cell-ECM interactions and modulation during embryonic development.Keywords
This publication has 39 references indexed in Scilit:
- Chemotaxis towards hyaluronan is dependent on CD44 expression and modulated by cell type variation in CD44-hyaluronan bindingJournal of Cell Science, 2005
- Three vertebrate hyaluronan synthases are expressed during mouse development in distinct spatial and temporal patternsDevelopmental Dynamics, 2005
- Neurocan–GFP Fusion ProteinJournal of Histochemistry & Cytochemistry, 2004
- Hyaluronan: from extracellular glue to pericellular cueNature Reviews Cancer, 2004
- Regulated gene expression of hyaluronan synthases during Xenopus laevis developmentGene Expression Patterns, 2004
- A single cdk inhibitor, p27Xic1, functions beyond cell cycle regulation to promote muscle differentiation inXenopusDevelopment, 2003
- CD44: From adhesion molecules to signalling regulatorsNature Reviews Molecular Cell Biology, 2003
- Immunohistochemical Demonstration of Hyaluronan and Its Possible Involvement in Axolotl Neural Crest Cell MigrationJournal of Structural Biology, 2000
- The extracellular matrix in neural crest-cell migrationTrends in Neurosciences, 1997
- A community effect in muscle developmentCurrent Biology, 1993