Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging

Abstract
Fluorescence microscopy of living cells enables visualization of the dynamics and interactions of intracellular molecules. However, fluorescence live-cell imaging is limited by photobleaching and phototoxicity induced by the excitation light. Here we describe controlled light-exposure microscopy (CLEM), a simple imaging approach that reduces photobleaching and phototoxicity two- to tenfold, depending on the fluorophore distribution in the object. By spatially controlling the light-exposure time, CLEM reduces the excitation-light dose without compromising image quality. We show that CLEM reduces photobleaching sevenfold in tobacco plant cells expressing microtubule-associated GFP-MAP4 and reduces production of reactive oxygen species eightfold and prolongs cell survival sixfold in HeLa cells expressing chromatin-associated H2B-GFP. In addition, CLEM increases the dynamic range of the fluorescence intensity at least twofold.