Abstract
A study is made of the forced oscillations of a second-order system having a small cubic nonlinearity in the restoring force. It is shown that under suitable conditions ultraharmonic or subharmonic motion exists in addition to the harmonic motion which a linearized theory would predict. By studying the stability of such motions it is shown that at points on the amplitude frequency-response curves having vertical tangents, instability and consequently “jumps” occur. A study of the dependence of the motion on the initial conditions reveals that while ultra-harmonic and harmonic motions are rather insensitive to initial conditions, the existence of subharmonic motion can be achieved only for a restricted set of initial conditions.

This publication has 0 references indexed in Scilit: