Vibrational Instability due to Coherent Tunneling of Electrons

Abstract
Effects of a coupling between the mechanical vibrations of a quantum dot placed between the two leads of a single electron transistor and coherent tunneling of electrons through a single level in the dot has been studied. We have found that for bias voltages exceeding a certain critical value a dynamical instability occurs and mechanical vibrations of the dot develop into a stable limit cycle. The current-voltage characteristics for such a transistor were calculated and they seem to be in a reasonably good agreement with recent experimental results for the single $C_{60}$-molecule transistor by Park et al.(Nature {\bf 407,} (2000) 57).

This publication has 0 references indexed in Scilit: