Abstract
We present an entirely new approach to closed-string field theory, called Igeometric string field theory R, which avoids the complications found in Becchi-Rouet-Stora-Tyutin string field theory (e.g., ghost counting, infinite overcounting of diagrams, midpoints, lack of modular invariance). Following the analogy with general relativity and Yang-Mills theory, we define a new infinite-dimensional local gauge group, called the unified string group, which uniquely specifies the connection fields, the curvature tensor, the measure and tensor calculus, and finally the action itself. Geometric field theory, when gauge fixed, yields an entirely new class of gauges called the interpolating gauge which allows us to smoothly interpolate between the midpoint gauge and the end-point gauge (‘‘covariantized light-cone gauge’’). We can show that geometric string field theory reproduces one copy of the Shapiro-Virasoro model. Surprisingly, after the gauge is broken, a new Iclosed four-string interactionR emerges as the counterpart of the instantaneous four-fermion Coulomb term in QED. This term restores modular invariance and precisely fills the missing region of the complex plane.

This publication has 16 references indexed in Scilit: