Abstract
Background Definition: Diabetes mellitus is a group of metabolic diseases characterised by hyperglycaemia (fasting plasma glucose ≥7.0 mmol/l, or two hour post 75g oral glucose load plasma glucose ≥11.1 mmol/l, on two or more occasions). Intensive treatment is designed to achieve blood glucose values as close to the non-diabetic range as possible. The essential components of such treatment are education, counselling, monitoring, self management, and pharmacological treatment with insulin or oral antidiabetic agents, to achieve specific glycaemic goals. Incidence/prevalence: Diabetes is diagnosed in around 5% of adults aged 20 years or over in the United States.1 A further 2.7% have undiagnosed diabetes on the basis of fasting glucose. The prevalence is similar in men and women, but diabetes is more common in many ethnic groups. The prevalence in people aged 40-74 has increased over the past decade. Aetiology: Diabetes results from deficient insulin secretion, decreased insulin action, or both. Many processes can be involved, ranging from autoimmune destruction of the β cells of the pancreas to incompletely understood abnormalities that result in resistance to insulin action. Genetic factors are involved in both mechanisms. In type 1 diabetes there is an absolute deficiency of insulin. In type 2 diabetes, insulin resistance and an inability of the pancreas to compensate are involved. Hyperglycaemia sufficient to cause tissue damage can be present without clinical symptoms for many years before diagnosis. Prognosis: Severe hyperglycaemia causes numerous symptoms, including polyuria, polydipsia, weight loss, and blurred vision. Acute, life threatening consequences of diabetes are hyperglycaemia with ketoacidosis or the non-ketotic hyperosmolar syndrome. There is increased susceptibility to certain infections. Long term complications of diabetes include retinopathy (with potential loss of vision), nephropathy (leading to renal failure), peripheral neuropathy (increased risk of foot ulcers, amputation, and Charcot joints), autonomic neuropathy (gastrointestinal, sexual, and bladder dysfunction), and greatly increased risk of atheroma affecting large vessels (macrovascular complications of myocardial infarction, stroke, or peripheral vascular disease). The physical, emotional, and social impact of diabetes and the demands of intensive treatment can also create problems for people with diabetes and their families. Interventions for glycaemic control in diabetes Beneficial: Intensive control of hyperglycaemia in people aged 13-70 years old Trade off between benefits and harms: Intensive control of hyperglycaemia in people with frequent severe hypoglycaemia Aims: To slow the development and progression of the microvascular and neuropathic complications of diabetes while minimising adverse effects of treatment (hypoglycaemia and weight gain) and maximising quality of life. Outcomes: Quality of life; short term burden of treatment; long term clinical complications; risks and benefits of treatment. Both the development of complications in people who have previously been free of them, and the progression of complications, are used as outcomes. Scales of severity are used to detect disease progression—for example, 19 step scales of diabetic retinopathy; normoalbuminuria, microalbuminuria, and albuminuria for nephropathy; absence or presence of clinical neuropathy.

This publication has 10 references indexed in Scilit: