QRS feature extraction using linear prediction

Abstract
This communication proposes a method called linear prediction (a high performant technique in digital speech processing) for analyzing digital ECG signals. There are several significant properties indicating that ECG signals have an important feature in the residual error signal obtained after processing by Durbin's linear prediction algorithm. This communication also indicates that the prediction order need not be more than two for fast arrhythmia detection. The ECG signal classification puts an emphasis on the residual error signal. For each ECG's QRS complex, the feature for recognition is obtained from a nonlinear transformation which transforms every residual error signal to a set of three states pulse-code train relative to the original ECG signal. The pulse-code train has the advantage of easy implementation in digital hardware circuits to achieve automated ECG diagnosis. The algorithm performs very well in feature extraction in arrhythmia detection. Using this method, our studies indicate that the PVC (premature ventricular contraction) detection has at least a 92 percent sensitivity for MIT/BIH arrhythmia database.

This publication has 10 references indexed in Scilit: