Abstract
The Arabidopsis floral organ identity gene APETALA3 (AP3) specifies the identity of petals and stamens in the flower. In flowers mutant for the temperature-sensitive ap3-1 allele, the petals and stamens are partially converted to sepals and carpels, respectively. ap3-1 contains a single nucleotide change in the AP3 gene that alters both an amino acid in the AP3 protein and the 5′ splice consensus site for intron 5. Surprisingly, the Ap3-1 mutant phenotype is not due to the missense mutation but instead is due to defects in splicing; specifically, exon 5 is frequently skipped by the splicing machinery at the restrictive temperature. In a screen for suppressors of ap3-1, we isolated an intragenic suppressor, ap3-11, that functions to suppress the splicing defects of ap3-1. Using a reverse transcriptase–polymerase chain reaction assay, we demonstrate that the percentage of full-length exon 5–containing AP3 RNAs correlates with the phenotype of the flowers in both ap3-1 and ap3-11. Rather surprisingly, the ap3-11 suppressor mutation is located in intron 4. One model explaining the function of ap3-11 is that the ap3-11 suppressor creates a novel branch point sequence that causes exon 5 to be more frequently recognized by the splicing machinery. The identification of such a suppressor strongly suggests that exon-scanning models of intron–exon recognition are operative in plants.