Synthesis of Stable Hydrazones of a Hydrazinonicotinyl-Modified Peptide for the Preparation of 99mTc-Labeled Radiopharmaceuticals

Abstract
Hydrazones of a 6-hydrazinonicotinyl-modified cyclic peptide IIb/IIIa receptor antagonist were prepared in order to protect the hydrazine moiety from reaction with trace aldehyde and ketone impurities encountered during the process of manufacturing and compounding lyophilized kits used in radiolabeling with 99mTc. Hydrazones were prepared by either a direct reaction of the 6-hydrazinonicotinyl-modified cyclic peptide with carbonyl compounds or by conjugation of the cyclic peptide with hydrazones of succinimidyl 6-hydrazinonicotinate. Stability of the hydrazones was evaluated by treatment with formaldehyde. Hydrazones derived from simple aliphatic aldehydes underwent an exchange reaction with formaldehyde, while hydrazones of aromatic aldehydes and ketones provided the greatest level of stability when challenged with formaldehyde. We have been successful in protecting 6-hydrazinonicotinyl-modified cyclic peptides from reacting with formaldehyde, while still allowing sufficient reactivity for radiolabeling with 99mTc. The hydrazones of succinimidyl 6-hydrazinonicotinate are convenient and general reagents for forming 6-hydrazinonicotinyl conjugates with amino-functionalized bioactive molecules.