Abstract
The free energy dependence of electron transfer in a few small-molecule donor−acceptor systems having hydrogen-bonding appendages was studied to evaluate the role of diffusion in masking the inverted region in bimolecular PET reactions. A small fraction of the probe molecules associate and this led to the simultaneous observation of unimolecular and diffusion-mediated quenching of the probe fluorescence. Free energy dependence studies showed that the unimolecular electron transfer obeys Marcus behavior and the diffusion-mediated electron transfer obeys Rehm−Weller behavior. The absence of an inverted region in bimolecular PET reactions is thus attributed to diffusion. The results of the free energy dependence studies suggest that distance dependence of electron transfer plays a role in masking the inverted region. To ascertain this aspect we have carried out a study of the distance dependence of electron transfer in the hydrogen-bonded donor−acceptor systems. For a system in the normal region an exponential rate decrease was observed. For a system in the inverted region it was observed that the rate depends very feebly on distance. Thus distance dependence studies did not confirm the prediction of enhanced rates at larger distances in the inverted region.

This publication has 92 references indexed in Scilit: