A linear baroclinic stability analysis of the zonal wind representing the mean monsoon situation over India is performed by the use of a multi-level quasi-geostrophic numerical model. An initial value approach is chosen to determine the instability characteristics of the wind. The dependency of the growth rate spectrum on the number of levels in the vertical and on the presence of vertical walls is studied. It is shown that 20 levels in the vertical are sufficient to realize the baroclinic instability of the monsoon mean wind. A shorter unstable wave of wavelength 1500 km and a longer unstable wave of wavelength 4750 km are found to be the most preferred growing waves from the growth rate spectrum. The shorter unstable wave is essentially confined below 500 mb, whereas the longer unstable wave is above 500 mb. It is also shown that the removal of wind shear below (above) the level of the westerly (easterly) jet from the wind profile, shifts the shorter (longer) unstable wave toward higher wavelen... Abstract A linear baroclinic stability analysis of the zonal wind representing the mean monsoon situation over India is performed by the use of a multi-level quasi-geostrophic numerical model. An initial value approach is chosen to determine the instability characteristics of the wind. The dependency of the growth rate spectrum on the number of levels in the vertical and on the presence of vertical walls is studied. It is shown that 20 levels in the vertical are sufficient to realize the baroclinic instability of the monsoon mean wind. A shorter unstable wave of wavelength 1500 km and a longer unstable wave of wavelength 4750 km are found to be the most preferred growing waves from the growth rate spectrum. The shorter unstable wave is essentially confined below 500 mb, whereas the longer unstable wave is above 500 mb. It is also shown that the removal of wind shear below (above) the level of the westerly (easterly) jet from the wind profile, shifts the shorter (longer) unstable wave toward higher wavelen...