Abstract
We present a unified theory for wave-packet dynamics of electrons in crystals subject to perturbations varying slowly in space and time. We derive the wave-packet energy up to the first-order gradient correction and obtain all kinds of Berry phase terms for the semiclassical dynamics and the quantization rule. For electromagnetic perturbations, we recover the orbital magnetization energy and the anomalous velocity purely within a single-band picture without invoking interband couplings. For deformations in crystals, besides a deformation potential, we obtain a Berry-phase term in the Lagrangian due to lattice tracking, which gives rise to new terms in the expressions for the wave-packet velocity and the semiclassical force. For multiple-valued displacement fields surrounding dislocations, this term manifests as a Berry phase, which we show to be proportional to the Burgers vector around each dislocation.
All Related Versions

This publication has 48 references indexed in Scilit: