Three-dimensional photogrammetry as a tool for estimating morphometrics and body mass of Steller sea lions (Eumetopias jubatus)

Abstract
A technique was developed to estimate morphometrics and body mass of Steller sea lions (Eumetopias jubatus) using three-dimensional (3D) photogrammetry. 3D photogrammetry reduces many of the problems associated with camera and body position encountered with two-dimensional photogrammetric techniques, allowing body mass estimation of free-ranging, active sea lions, without sedation, heavy weighing equipment, and disturbance. 3D computer wireframes of 53 Steller sea lions of various age classes were generated from multiple time-synchronous digital photos and used to estimate length, girth, and volume. Average estimates of standard length and axillary girth were within ±2.5% and ±4.0% of physically measured dimensions, respectively. Average estimates of standard length and axillary girth using only wireframes based on ideal body postures were within ±1.7% and ±3.1% of physically measured dimensions, respectively. Regressions of physically measured mass on photogrammetrically estimated body volume yielded a predictive model. Body mass estimates using this model were on average within 9.0% (95% confidence interval = ±1.7%) of the physically measured mass. This technique was also successfully applied to reptiles and fish.