Breath‐hold MR measurements of blood flow velocity in internal mammary arteries and coronary artery bypass grafts

Abstract
Breath-hold velocity-encoded cine MR (VENC-MR) imaging is a feasible method for measuring phasic blood flow velocity in small vessels that move during respiration. The purposes of the current study are to compare breathhold VENC-MR measurements of flow velocities in the internal mammary arteries (IMA) with nonbreath-hold measurements and to characterize the systolic and diastolic flow velocity curves in a cardiac cycle in native IMA and IMA grafts. Flow velocity in 30 native IMA and 8 IMA grafts were evaluated with a breath-hold VENC-MR sequence with K-space segmentation and view-sharing reconstruction(TR/TE=16/9 msec, VENC=100 cm/s). In 10 native IMA, nonbreathhold VENC-MR images were acquired as well for comparison. Breath-hold VENC-MR imaging showed significantly higher systolic and diastolic peak velocities in native IMA (43.1 cm/second ± 15.0 and 10.0 cm/second ± 4.8), in comparison to those of nonbreath-hold VENC-MR imaging (27.6 cm/second ± 10.2 and 7.3 cm/second ± 3.9, P<.05). The diastolic/systolic peak velocity ratio in the IMA grafts (.88 ± .41) was significantly higher than that in native IMA (.24 ± .08, P<.01). Interobserver variability in the flow velocity measurement was less than 4%. Breath-hold VENC-MR imaging demonstrated higher peak flow velocity in the IMA than nonbreath-hold VENC-MR imaging. This technique is a rapid and effective method for the noninvasive assessment of blood flow velocity in IMA grafts.

This publication has 14 references indexed in Scilit: