Model-Based Design of Growth-Attenuated Viruses

Abstract
Live-virus vaccines activate both humoral and cell-mediated immunity, require only a single boosting, and generally provide longer immune protection than killed or subunit vaccines. However, growth of live-virus vaccines must be attenuated to minimize their potential pathogenic effects, and mechanisms of attenuation by conventional serial-transfer viral adaptation are not well-understood. New methods of attenuation based on rational engineering of viral genomes may offer a potentially greater control if one can link defined genetic modifications to changes in virus growth. To begin to establish such links between genotype and growth phenotype, we developed a computer model for the intracellular growth of vesicular stomatitis virus (VSV), a well-studied, nonsegmented, negative-stranded RNA virus. Our model incorporated established regulatory mechanisms of VSV while integrating key wild-type infection steps: hijacking of host resources, transcription, translation, and replication, followed by assembly and release of progeny VSV particles. Generalization of the wild-type model to allow for genome rearrangements matched the experimentally observed attenuation ranking for recombinant VSV strains that altered the genome position of their nucleocapsid gene. Finally, our simulations captured previously reported experimental results showing how altering the positions of other VSV genes has the potential to attenuate the VSV growth while overexpressing the immunogenic VSV surface glycoprotein. Such models will facilitate the engineering of new live-virus vaccines by linking genomic manipulations to controlled changes in virus gene-expression and growth. The engineering of viral genomes provides ways not only to explore viral regulatory mechanisms at a genomic level, but also to produce recombinant viruses that may serve as vaccines, gene delivery vectors, and oncolytic (tumor-killing) agents. However, the complexity of interactions among viral and cellular components involved in the life cycle of a virus can make it challenging to anticipate how altering viral components will influence the overall behavior of the virus. Lim, Lang, Lam, and Yin have developed a computer model that begins to mechanistically account for key virus–cell interactions in its predictions of viral intracellular development. Lim et al.'s model was able to capture experimentally observed effects of gene rearrangements on the levels and timing of viral protein expression and virus progeny production, aspects that are important for the design of live-virus vaccines. Refinement and extension of their approach to current and other virus systems has the potential to advance the application of viruses as therapeutic agents.