Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1 H NMR spectroscopy study
- 11 January 1999
- journal article
- research article
- Published by Springer Nature in Diabetologia
- Vol. 42 (1) , 113-116
- https://doi.org/10.1007/s001250051123
Abstract
Summary Recent muscle biopsy studies have shown a relation between intramuscular lipid content and insulin resistance. The aim of this study was to test this relation in humans by using a novel proton nuclear magnetic resonance (1H NMR) spectroscopy technique, which enables non-invasive and rapid ( ∼ 45 min) determination of intramyocellular lipid (IMCL) content. Normal weight non-diabetic adults (n = 23, age 29 ± 2 years, BMI = 24.1 ± 0.5 kg/m2) were studied using cross-sectional analysis. Insulin sensitivity was assessed by a 2-h hyperinsulinaemic ( ∼ 450 pmol/l)-euglycaemic ( ∼ 5 mmol/l) clamp test. Intramyocellular lipid concentrations were determined by using localized 1H NMR spectroscopy of soleus muscle. Simple linear regression analysis showed an inverse correlation (r = –0.692, p = 0.0017) between intramyocellular lipid content and M-value (100–120 min of clamp) as well as between fasting plasma non-esterified fatty acid concentration and M-value (r = –0.54, p= 0.0267). Intramyocellular lipid content was not related to BMI, age and fasting plasma concentrations of triglycerides, non-esterified fatty acids, glucose or insulin. These results show that intramyocellular lipid concentration, as assessed non invasively by localized 1H NMR spectroscopy, is a good indicator of whole body insulin sensitivity in non-diabetic, non-obese humans. [Diabetologia (1999) 42: 113–116]Keywords
This publication has 0 references indexed in Scilit: