On the relationship between the probenecid‐sensitive transport of daunorubicin or calcein and the glutathione status of cells overexpressing the multidrug resistance‐associated protein (MRP)
- 11 December 1995
- journal article
- research article
- Published by Wiley in International Journal of Cancer
- Vol. 63 (6) , 855-862
- https://doi.org/10.1002/ijc.2910630617
Abstract
Cells exposed to calcein acetoxymethyl ester (calcein AM) in the growth medium become fluorescent following cleavage of calcein AM by cellular esterases to produce the fluorescent derivative calcein. It has previously been shown by others that multidrug resistant cells which overexpress P-glycoprotein accumulate much less fluorescent calcein than the corresponding parental cells. We have now examined the transport of calcein in multidrug resistant cells which overexpress an alternative transporter, the multidrug resistance-associated protein (MRP). Accumulation of calcein fluorescence was greatly reduced in the MRP-overexpressing human lung cancer cell lines COR-L23/R and MOR/R compared with their parental lines. Energy depletion resulted in a considerably increased accumulation in the resistant lines. Treatment of resistant cells with buthionine sulfoximine (BSO), which depletes cellular glutathione (GSH), did not affect calcein accumulation, in marked contrast to our previous results for daunorubicin or the fluorescent probe rhodamine 123. Genistein, verapamil, cyclosporin A and oua-bain were also each able to modify, to some extent, accumulation of daunorubicin, whilst having essentially no effect on calcein accumulation. However, the organic anion transport inhibitor probenecid was able to increase accumulation of both calcein and daunorubicin in the resistant cells. Genistein and verapamil treatment preferentially reduced the GSH content of resistant cells, whilst probenecid did not. However, probenecid caused a clear decrease in release of GSH from resistant cells into the medium. © 1995 Wiley-Liss, Inc.Keywords
This publication has 24 references indexed in Scilit:
- Calcein accumulation as a fluorometric functional assay of the multidrug transporterPublished by Elsevier ,2002
- ATP‐dependent efflux of calcein by the multidrug resistance protein (MRP): no inhibition by intracellular glutathione depletionFEBS Letters, 1995
- Characterization of the ATP‐dependent leukotriene C4 export carrier in mastocytoma cellsEuropean Journal of Biochemistry, 1994
- A comparison of rhodamine 123 accumulation and efflux in cells with P-glycoprotein-mediated and MRP-associated multidrug resistance phenotypesEuropean Journal Of Cancer, 1994
- Chemosensitisation and drug accumulation effects of cyclosporin A, PSC-833 and verapamil in human MDR large cell lung cancer cells expressing a 190k membrane protein distinct from P-glycoproteinEuropean Journal Of Cancer, 1993
- BIOCHEMISTRY OF MULTIDRUG RESISTANCE MEDIATED BY THE MULTIDRUG TRANSPORTERAnnual Review of Biochemistry, 1993
- Induction of Multidrug Resistance in Human Cells by Transient Exposure to Different Chemotherapeutic DrugsJNCI Journal of the National Cancer Institute, 1993
- Overexpression of a Transporter Gene in a Multidrug-Resistant Human Lung Cancer Cell LineScience, 1992
- Combinedin vitro modulation of adriamycin resistanceInternational Journal of Cancer, 1991