Abstract
The hypothalamic peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), is a potent stimulator of cAMP accumulation in the anterior pituitary gland, though its physiological function has yet to be defined. To establish the target cells of PACAP action we have measured PACAP-induced changes in cytosolic free calcium ion concentration ([Ca2+]i) in single identified anterior pituitary cells. This was achieved by combining fura-2 videomicroscopy, to measure [Ca2+]i, and reverse hemolytic plaque assays, to identify the secreted hormone. PACAP (100 nM) increased [Ca2+]i in 32% of all pituitary cells. These responses were predominantly seen in identified gonadotropes and somatotropes, but rarely in corticotropes or lactotropes. PACAP induced two forms of Ca2+ response in gonadotropes; a "Ca2+ spike" (independent of extracellular Ca2+) in 72% of responding gonadotropes, and an extracellular Ca(2+)-dependent "Ca2+ plateau" (28% of cells). In somatotropes, PACAP stimulated either Ca2+ plateau responses (58% of responding somatotropes) or repetitive "Ca2+ transients" (42% of cells), both of which were dependent upon extracellular Ca2+. PACAP, therefore, produces distinct changes in [Ca2+]i in gonadotropes and somatotropes, which may be related to distinct intracellular messenger pathways. The identification of these cell types as targets of PACAP action suggests a role in the regulation of reproduction and growth.

This publication has 0 references indexed in Scilit: