In vivoexcision and amplification of large segments of theEscherichia coligenome
- 1 January 1994
- journal article
- Published by Oxford University Press (OUP) in Nucleic Acids Research
- Vol. 22 (12) , 2392-2398
- https://doi.org/10.1093/nar/22.12.2392
Abstract
In vivo excision and amplification of large segments of a genome offer an alternative to heterologous DNA cloning. By obtaining predetermined fragments of the chromosome directly from the original organism, the problems of clone stability and clone identification are alleviated. This approach involves the insertion of two recognition sequences for a site-specific recombinase into the genome at predetermined sites, 50-100 kb apart. The integration of these sequences, together with a conditional replication origin (ori), is targeted by homologous recombination. The strain carrying the insertions is stably maintained until, upon induction of specifically engineered genes, the host cell expresses the site-specific recombinase and an ori-specific replication protein. The recombinase then excises and circularizes the genomic segment flanked by the two insertions. This excised DNA, which contains ori, is amplified with the aid of the replication protein and can be isolated as a large plasmid. The feasibility of such an approach is demonstrated here for E. coli. Using the yeast FLP/FRT site-specific recombination system and the pi/gamma-ori replication initiation of plasmid R6K, we have devised a procedure that should allow the isolation of virtually any segment of the E. coli genome. This was shown by excising, amplifying and isolating the 51-kb lacZ--phoB and the 110-kb dapX--dsdC region of the E. coli MG1655 genome.Keywords
This publication has 26 references indexed in Scilit:
- Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6Kλ origin plasmids at different copy numbersGene, 1994
- Determination of DNA sequences essential for FLP-mediated recombination by a novel method.Journal of Biological Chemistry, 1985
- The FLP protein of the yeast 2-microns plasmid: expression of a eukaryotic genetic recombination system in Escherichia coli.Proceedings of the National Academy of Sciences, 1983
- High mutation frequency in DNA transfected into mammalian cells.Proceedings of the National Academy of Sciences, 1983
- Plasmid R6K DNA replicationJournal of Molecular Biology, 1982
- Plasmid R6K DNA replicationJournal of Molecular Biology, 1982
- INTEGRATION AND EXCISION OF BACTERIOPHAGE λ: THE MECHANISM OF CONSERVATIVE SITE SPECIFIC RECOMBINATIONAnnual Review of Genetics, 1981
- Bacteriophage P1 site-specific recombinationJournal of Molecular Biology, 1981
- A reliable method for the recovery of DNA fragments from agarose and acrylamide gelsAnalytical Biochemistry, 1981
- Trans-complementation-dependent replication of a low molecular weight origin fragment from plasmid R6KCell, 1978