Human T cells respond to mouse mammary tumor virus-encoded superantigen: V beta restriction and conserved evolutionary features.

Abstract
Mouse mammary tumor virus (MMTV)-encoded superantigens (SAGs) influence the murine T cell repertoire and stimulate a strong mixed lymphocyte response in vitro. These SAGs are encoded by the open reading frame of the 3' long terminal repeat of MMTV, termed MMTV SAGs. The T cell response to MMTV SAGs is V beta restricted and requires expression of the class II molecules of the major histocompatibility complex (MHC) on the presenting cells. While human T cells respond to bacterial SAGs, it is not known if human T cells or human MHC class II molecules can interact with MMTV SAGs. A fibroblastic cell line expressing the human MHC class II molecule HLA-DR1 and the Mtv-7 sag gene encoding Mls-1 was used to stimulate human T cells. We show here that human T cells efficiently proliferate in response to Mls-1 presented by HLA-DR1. This T cell response was inhibited by mAbs directed against CD4 or MHC class II molecules but not by mAbs specific for CD8 or MHC class I molecules. Moreover, the response to Mls-1 was limited to human T cells expressing a restricted set of T cell receptor V beta chains. Human T cells expressing V beta 12, 13, 14, 15, and 23 were selectively amplified after Mtv-7 sag stimulation. Interestingly, these human V beta s share the highest degree of homology with the mouse V beta s interacting with Mls-1. These results show a strong evolutionary conservation of the structures required for the presentation and the response to retrovirally encoded endogenous SAGs, raising the possibility that similar elements operate in humans to shape the T cell repertoire.