Adrenergic modulation of NMDA receptors in prefrontal cortex is differentially regulated by RGS proteins and spinophilin
- 28 November 2006
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 103 (48) , 18338-18343
- https://doi.org/10.1073/pnas.0604560103
Abstract
The noradrenergic system in the prefrontal cortex (PFC) is involved in many physiological and psychological processes, including working memory and mood control. To understand the functions of the noradrenergic system, we examined the regulation of NMDA receptors (NMDARs), key players in cognition and emotion, by α1- and α2-adrenergic receptors (α1-ARs, α2-ARs) in PFC pyramidal neurons. Applying norepinephrine or a norepinephrine transporter inhibitor reduced the amplitude but not paired-pulse ratio of NMDAR-mediated excitatory postsynaptic currents (EPSC) in PFC slices. Specific α1-AR or α2-AR agonists also decreased NMDAR-EPSC amplitude and whole-cell NMDAR current amplitude in dissociated PFC neurons. The α1-AR effect depended on the phospholipase C–inositol 1,4,5-trisphosphate–Ca2+pathway, whereas the α2-AR effect depended on protein kinase A and the microtubule-based transport of NMDARs that is regulated by ERK signaling. Furthermore, two members of the RGS family, RGS2 and RGS4, were found to down-regulate the effect of α1-AR on NMDAR currents, whereas only RGS4 was involved in inhibiting α2-AR regulation of NMDAR currents. The regulating effects of RGS2/4 on α1-AR signaling were lost in mutant mice lacking spinophilin, which binds several RGS members and G protein-coupled receptors, whereas the effect of RGS4 on α2-AR signaling was not altered in spinophilin-knockout mice. Our work suggests that activation of α1-ARs or α2-ARs suppresses NMDAR currents in PFC neurons by distinct mechanisms. The effect of α1-ARs is modified by RGS2/4 that are recruited to the receptor complex by spinophilin, whereas the effect of α2-ARs is modified by RGS4 independent of spinophilin.Keywords
This publication has 43 references indexed in Scilit:
- Microtubule Regulation of N-Methyl-D-aspartate Receptor Channels in NeuronsPublished by Elsevier ,2005
- Angiotensin II-evoked enhanced expression of RGS2 attenuates Gi-mediated adenylyl cyclase signaling in A10 cellsCardiovascular Research, 2005
- Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptorsNature Cell Biology, 2005
- Spinophilin Blocks Arrestin Actions in Vitro and in Vivo at G Protein-Coupled ReceptorsScience, 2004
- Regional expression of RGS4 mRNA in human brain†European Journal of Neuroscience, 2004
- Confirming RGS4 as a susceptibility gene for schizophreniaAmerican Journal Of Medical Genetics Part B-Neuropsychiatric Genetics, 2003
- Glutamatergic Mechanisms in SchizophreniaAnnual Review of Pharmacology and Toxicology, 2002
- Agonist-regulated Interaction between α2-Adrenergic Receptors and SpinophilinJournal of Biological Chemistry, 2001
- The Regulator of G Protein Signaling FamilyAnnual Review of Pharmacology and Toxicology, 2000
- Neurobiological mechanisms in human anxiety evidence supporting central noradrenergic hyperactivityNeuropharmacology, 1983