Effect of exercise intensity and duration on postexercise metabolism

Abstract
Data are reported on the net recovery O2 consumption (VO2) for nine male subjects (mean age 21.9 yr, VO2max 63.0 ml.kg-1.min-1, body fat 10.6%) used in a 3 (independent variables: intensities of 30, 50, and 70% VO2max) x 3 (independent variables: durations of 20, 50, and 80 min) repeated measures design (P less than or equal to 0.05). The 8-h mean excess postexercise O2 consumptions (EPOCs) for the 20-, 50-, and 80-min bouts, respectively, were 1.01, 1.43, and 1.04 liters at 30% VO2max (6.8 km/h); 3.14, 5.19, and 6.10 liters at 50% VO2max (9.5 km/h); and 5.68, 10.04, and 14.59 liters at 70% VO2max (13.4 km/h). The mean net total O2 costs (NTOC = net exercise VO2 + EPOC) for the 20-, 50-, and 80-min bouts, respectively, were 20.48, 53.20, and 84.23 liters at 30% VO2max; 38.95, 100.46, and 160.59 liters at 50% VO2max; and 58.30, 147.48, and 237.17 liters at 70% VO2max. The nine EPOCs ranged only from 1.0 to 8.9% of the NTOC (mean 4.8%) of the exercise. These data, therefore, indicate that in well-trained subjects the 8-h EPOC per se comprises a very small percentage of the NTOC of exercise.

This publication has 0 references indexed in Scilit: