Bifurcation problems for the 𝑝-Laplacian in 𝑅ⁿ

Abstract
In this paper we consider the bifurcation problemdiv(|u|p2u)=λg(x)|u|p2u+f(λ,x,u),\begin{equation*} -\operatorname {div} (|\nabla u|^{p-2}\nabla u)=\lambda g(x)|u|^{p-2}u+f(\lambda , x, u), \end{equation*}inRNR^Nwithp>1p>1. We show that a continuum of positive solutions bifurcates out from the principal eigenvalueλ1\lambda _{1}of the problemdiv(|u|p2u)=λg(x)|u|p2u.\begin{equation*}-\operatorname {div} (|\nabla u|^{p-2}\nabla u)=\lambda g(x)|u|^{p-2}u. \end{equation*}Here both functionsffandggmay change sign.

This publication has 14 references indexed in Scilit: