Numerical analysis of thermomagnetic generators

Abstract
Thermomagnetic generators allow direct conversion of heat energy to electrical energy. Temperature cycling about or near the Curie temperature causes changes in magnetization, resulting in time variant magnetic flux and induced voltage in a surrounding conductor. Numerical analyses of regenerative thermomagnetic generators with perfect regeneration have been performed for three working materials: iron, gadolinium, and Ho69Fe31. Power density above 20 W/kg of shunt material and efficiency approaching Carnot limits are possible over temperature differences of 50 K. Analytical studies performed during the 1950s predicted maximum power density less than 7 W/kg and efficiency less than 1% for nonregenerative cycles.

This publication has 5 references indexed in Scilit: