Translocation of Protein Kinase C Isoforms to Subcellular Targets in Ischemic and Anesthetic Preconditioning
- 1 July 2003
- journal article
- research article
- Published by Wolters Kluwer Health in Anesthesiology
- Vol. 99 (1) , 138-147
- https://doi.org/10.1097/00000542-200307000-00023
Abstract
Background: Translocation of protein kinase C (PKC) to subcellular targets is a pivotal signaling step in ischemic preconditioning (IPC). However, to date, it is unknown whether PKC isoforms translocate in anesthetic preconditioning (APC). Methods: The PKC blockers chelerythrine and rottlerin and the adenosine triphosphate-dependent potassium (K(ATP)) channel blockers HMR-1098 and 5-hydroxydecanoate were used to assess the role of PKC and K(ATP) channels in isolated perfused rat hearts subjected to IPC or APC (1.5 minimum alveolar concentration isoflurane) followed by 40 min of ischemia and 30 min of reperfusion. Immunohistochemical techniques were used to visualize PKC translocation after preconditioning. In addition, the phosphorylation status of PKC isoforms was assessed. Results: Chelerythrine, rottlerin, and 5-hydroxydecanoate blocked IPC and APC with respect to functional recovery, albeit IPC at higher concentrations. HMR-1098 did not affect IPC or APC. PKCdelta and PKCepsilon translocated to nuclei in both IPC and APC, which was inhibited by chelerythrine and rottlerin. PKCdelta translocated to mitochondria but not to the sarcolemma, and PKCepsilon translocated to the sarcolemma and intercalated disks but not to mitochondria. Interestingly, PKCepsilon was accumulated at the intercalated disks in control and preconditioned hearts. Phosphorylation of PKCdelta on serine643 was increased in IPC and APC and blocked by chelerythrine and rottlerin, whereas phosphorylation of PKCdelta on threonine505 was increased only in IPC and not blocked by chelerythrine or rottlerin. PKCepsilon on serine729 did not change its phosphorylation status. Conclusions: This study indicates that translocation of PKCdelta plays a pivotal role in IPC and APC and suggests that phosphorylation of PKCdelta on serine643 may be of particular relevance in transferring the APC stimulus to mitochondrial K(ATP) channels.Keywords
This publication has 43 references indexed in Scilit:
- Mechanisms of Desflurane-induced Preconditioning in Isolated Human Right Atria In VitroAnesthesiology, 2002
- Volatile Anesthetics Mimic Cardiac Preconditioning by Priming the Activation of Mitochondrial KATPChannels via Multiple Signaling PathwaysAnesthesiology, 2002
- Myocardial K ATP Channels in PreconditioningCirculation Research, 2000
- Isoflurane, but not Halothane, Induces Protection of Human Myocardium via Adenosine A1Receptors and Adenosine Triphosphate–sensitive Potassium ChannelsAnesthesiology, 2000
- Sarcolemmal and Mitochondrial Adenosine Triphosphate– dependent Potassium ChannelsAnesthesiology, 2000
- Identification and characterisation of transcript and protein of a new short N-terminal utrophin isoformJournal of Cellular Biochemistry, 2000
- Colchicine Inhibits Isoflurane-induced PreconditioningAnesthesiology, 1999
- Isoflurane-enhanced Recovery of Canine Stunned MyocardiumAnesthesiology, 1999
- Role of Protein Kinase C in Mitochondrial K ATP Channel–Mediated Protection Against Ca 2+ Overload Injury in Rat MyocardiumCirculation Research, 1999
- Implication of Protein Kinase C- , , and Isoforms in Ischemic Preconditioning in Perfused Rat HeartsThe Journal of Biochemistry, 1997