Determination of Shapes and Maximums of Analyte Peaks Based on Solute Mobilities in Capillary Electrophoresis

Abstract
In capillary electrophoresis, the relative orders of mobilities of analyte, additive, and the complex formed determine the analyte peak shape in a way similar to the way the binding isotherms determine the peak shapes in chromatography. The three mobilities allow six possible orders; each produces a characteristic peak shape in CE. Equations describing the analyte migration in a CE system with the presence of mobility-changing additives can be implemented into computer programs to predict the migration times of the analyte peak maximums, and the predicted migration times agree well with the experimental results.