Phospholipid synthesis in yeast: regulation by phosphorylation

Abstract
The yeast Saccharomyces cerevisiae is a model eukaryotic organism for the study of the regulation of phospholipid synthesis. The major phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine) are synthesized by complementary (CDP–diacylglycerol and Kennedy) pathways. The regulation of these pathways is complex and is controlled by genetic and biochemical mechanisms. Inositol plays a major role in the regulation of phospholipid synthesis. Inositol-mediated regulation involves the expression of genes and the modulation of enzyme activities. Phosphorylation is a major mechanism by which enzymes and transcription factors are regulated, and indeed, key phospholipid biosynthetic enzymes have been identified as targets of phosphorylation. Protein kinase A phosphorylates CTP synthetase, choline kinase, Mg2+-dependent phosphatidate phosphatase, phosphatidylserine synthase, and the transcription factor Opi1p. CTP synthetase and Opi1p are also phosphorylated by protein kinase C. The phosphorylation of these proteins plays a role in regulating their activities and (or) function in phospholipid synthesis.Key words: phospholipids, yeast, phospholipid synthesis, phosphorylation, protein kinase A, protein kinase C.