Cyanobacterial Phycobilisomes. Particles from synechocystis 6701 and two pigment mutants
Open Access
- 1 June 1980
- journal article
- research article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 85 (3) , 558-566
- https://doi.org/10.1083/jcb.85.3.558
Abstract
The phycobilisomes of the unicellular cyanobacterium Synechocystis 6701, grown in white light, contain C-phycoerythrin, C-phycocyanin, and allophycocyanin in a molar ration of approximately 2:2:1, and in addition, polypeptides of 99, 46, 33.5, 31.5, 30.5, and 27 x 10(3) Daltons, as well as a trace of a approximately 9 x 10(3)-dalton component. Two nitrosoguanidine-induced mutants of this organism produce aberrant phycobilisomes. Crude cell extracts of these mutants, 6701-NTG25 and NTG31, contain phycoerythrin, phycocyanin, and allophycocyanin in a molar ration of 1:5:1:1 and 0.55:0.3:1.0, respectively. The phycobilisomes from both mutants lack the 33.5 x 10(3)-dalton polypeptide. Wile-type phycobilisomes consist of a core composed of an equilateral array of three cylindrical elements surrounded by six rods in a fanlike arrangement. The rods are made up of stacked disks, 11 nm in diameter and 6 nm thick. In phycobilisomes of mutant 6701-NTG25, numerous particles with fewer than six rods are seen. Mutant 6701-NTG31 produces incomplete structures that extend from triangular core particles, through cores with one or two attached rods, to cores with as many as five rods. The structure of the core appears unaltered throughout. The amount of phycocyanin (relative to allophycocyanin) appears to determine the number of rods per core. A common assembly form seen in 6701-NTG31 is the core with two rods attached at opposite sides. From observations of this form, it is concluded that the core elements are cylindrical, with a height of 14 nm and a diameter of 11 nm. No consistently recognizable structural details are evident within the core elements.This publication has 20 references indexed in Scilit:
- Characterization of cyanobacterial phycobilisomes in zwitterionic detergentsProceedings of the National Academy of Sciences, 1979
- Biliprotein Assembly in the Disc-Shaped Phycobilisomes of Rhodella violacea. On the Molecular Composition of Energy-Transfering Complexes (Tripartite Units) Forming the Periphery of the Phycobilisome*European Journal of Biochemistry, 1978
- Molecular composition of cyanobacterial phycobilisomes.Proceedings of the National Academy of Sciences, 1977
- Structure and molecular organization of the photosynthetic accessory pigments of cyanobacteria and red algaeMolecular and Cellular Biochemistry, 1977
- Physico-chemical and immunological properties of allophycocyaninsArchiv für Mikrobiologie, 1977
- Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopyBiochimica et Biophysica Acta (BBA) - Bioenergetics, 1976
- Analysis of bacteriophage T7 early RNAs and proteins on slab gelsJournal of Molecular Biology, 1973
- Electron microscopy of tobacco mosaic virus under conditions of minimal beam exposureJournal of Molecular Biology, 1970
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970
- Preparation of calcium phosphate for protein chromatographyAnalytical Biochemistry, 1965