Neural network coupled with IIR sequential adapter for phoneme recognition in continuous speech

Abstract
The authors present an NN-IIR (neural network/infinite impulse response filter) system for phoneme recognition in continuous speech based on the idea of modeling the recognition process by state evolution and interpretation equations. This work gives a solution to temporal information representation in phoneme recognition using neural networks and recursive filters, yielding better recognition results for continuous speech. This recognition system has two promising properties, i.e., capabilities for dealing with sequential properties and for interpreting speech signals by means of a training process. It was shown experimentally that the NN-IIR network obtained good performance for continuous speech recognition. Preliminary experiments with limited training data indicate that the NN-IIR provides good discrimination power for plosives, which are highly context-dependent.<>

This publication has 5 references indexed in Scilit: