Abstract
In the last decade, ab initio simulations and especially Car–Parrinello molecular dynamics have significantly contributed to the improvement of our understanding of both the physical and chemical properties of water, ice, and hydrogen‐bonded systems in general. At the heart of this family of in silico techniques lies the crucial idea of computing the many‐body interactions by solving the electronic structure problem “on the fly” as the simulation proceeds, which circumvents the need for pre‐parameterized potential models. In particular, the field of proton transfer in hydrogen‐bonded networks greatly benefits from these technical advances. Here, several systems of seemingly quite different nature and of increasing complexity, such as Grotthuss diffusion in water, excited‐state proton‐transfer in solution, phase transitions in ice, and protonated water networks in the membrane protein bacteriorhodopsin, are discussed in the realms of a unifying viewpoint.