Orbital Tests of Relativistic Gravity using Artificial Satellites
Preprint
- 28 March 1994
Abstract
We reexamine non-Einsteinian effects observable in the orbital motion of low-orbit artificial Earth satellites. The motivations for doing so are twofold: (i) recent theoretical studies suggest that the correct theory of gravity might contain a scalar contribution which has been reduced to a small value by the effect of the cosmological expansion; (ii) presently developed space technologies should soon give access to a new generation of satellites endowed with drag-free systems and tracked in three dimensions at the centimeter level. Our analysis suggests that such data could measure two independent combinations of the Eddington parameters (beta - 1) and (gamma - 1) at the 10^-4 level and probe the time variability of Newton's "constant" at the d(ln G)/dt ~ 10^-13 yr^-1 level. These tests would provide well-needed complements to the results of the Lunar Laser Ranging experiment, and of the presently planned experiments aiming at measuring (gamma -1). In view of the strong demands they make on the level of non- gravitational perturbations, these tests might require a dedicated mission consisting of an optimized passive drag-free satellite.Keywords
All Related Versions
- Version 1, 1994-03-28, ArXiv
- Published version: Physical Review D, 50 (4), 2381.
This publication has 0 references indexed in Scilit: