Liquid-crystal blazed grating with azimuthally distributed liquid-crystal directors

Abstract
We propose a novel formation method of arbitrary phase profiles of circular light by controlling azimuthal angles of liquid-crystal directors; its principle is described theoretically. A new liquid-crystal blazed grating is demonstrated by use of the proposed method. It is revealed that the first-order diffraction efficiency reaches the maximum value (theoretically 100%, experimentally approximately 90%) at an optimum applied voltage when the phase difference between the extraordinary and ordinary rays agrees with one-half the wavelength. Furthermore, the polarization states of the diffracted light beams are analyzed by Stokes parameter measurements, and unique polarization-splitting properties are revealed.