Improved Immobilized Metal Affinity Chromatography for Large-Scale Phosphoproteomics Applications
- 29 August 2006
- journal article
- Published by American Chemical Society (ACS) in Journal of Proteome Research
- Vol. 5 (10) , 2789-2799
- https://doi.org/10.1021/pr0602803
Abstract
Dysregulated protein phosphorylation is a primary culprit in multiple physiopathological states. Hence, although analysis of signaling cascades on a proteome-wide scale would provide significant insight into both normal and aberrant cellular function, such studies are simultaneously limited by sheer biological complexity and concentration dynamic range. In principle, immobilized metal affinity chromatography (IMAC) represents an ideal enrichment method for phosphoproteomics. However, anecdotal evidence suggests that this technique is not widely and successfully applied beyond analysis of simple standards, gel bands, and targeted protein immunoprecipitations. Here, we report significant improvements in IMAC-based methodology for enrichment of phosphopeptides from complex biological mixtures. Moreover, we provide detailed explanation for key variables that in our hands most influenced the outcome of these experiments. Our results indicate 5- to 10-fold improvement in recovery of singly- and multiply phosphorylated peptide standards in addition to significant improvement in the number of high-confidence phosphopeptide sequence assignments from global analysis of cellular lysate. In addition, we quantitatively track phosphopeptide recovery as a function of phosphorylation state, and provide guidance for impedance-matching IMAC column capacity with anticipated phosphopeptide content of complex mixtures. Finally, we demonstrate that our improved methodology provides for identification of phosphopeptide distributions that closely mimic physiological conditions. Keywords: immobilized metal affinity chromatography • phosphoproteomicsKeywords
This publication has 22 references indexed in Scilit:
- Phosphotyrosine Proteomic Study of Interferon α Signaling Pathway Using a Combination of Immunoprecipitation and Immobilized Metal Affinity ChromatographyMolecular & Cellular Proteomics, 2005
- Automated immobilized metal affinity chromatography/nano‐liquid chromatography/electrospray ionization mass spectrometry platform for profiling protein phosphorylation sitesRapid Communications in Mass Spectrometry, 2004
- Robust Phosphoproteomic Profiling of Tyrosine Phosphorylation Sites from Human T Cells Using Immobilized Metal Affinity Chromatography and Tandem Mass SpectrometryAnalytical Chemistry, 2004
- Differential phosphoprofiles of EGF and EGFR kinase inhibitor-treated human tumor cells and mouse xenograftsClinical Proteomics, 2004
- Phosphoproteome Analysis of Capacitated Human SpermJournal of Biological Chemistry, 2003
- The Protein Kinase Complement of the Human GenomeScience, 2002
- Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiaeNature Biotechnology, 2002
- Proteomics: the move to mixturesJournal of Mass Spectrometry, 2001
- Oncogenic kinase signallingNature, 2001
- The Sequence of the Human GenomeScience, 2001