Evaluation of Phase Coherent Length of Hot Electrons Based on Wigner Distribution Function
- 1 July 1997
- journal article
- Published by IOP Publishing in Japanese Journal of Applied Physics
- Vol. 36 (7A) , L845
- https://doi.org/10.1143/jjap.36.l845
Abstract
A new methodology for evaluation of the phase coherent length of hot electrons is proposed based on the Wigner distribution function. In our approach, the coherent length can be evaluated directly from the resonant width in the momentum-space of the Wigner distribution function under the influence of electron-electron interactions and phonon scattering. In this paper, a coherent length of hot electrons created in a double barrier resonant tunneling structure is studied. It is found that the electron coherency deteriorates in the quantum well layer due to the interaction with the accumulated electrons, and that consequently to obtain hot electrons with longer coherency from the resonant tunneling structure it should be biased near the valley region of the I-V curve rather than at the peak voltage.Keywords
This publication has 8 references indexed in Scilit:
- Possibility of High-Temperature Evaluation of Phase Coherent Length of Hot Electrons in Triple-Barrier Resonant Tunneling DiodesJapanese Journal of Applied Physics, 1995
- Evaluation of Hot Electron Coherent Length Using Well Width Dependence of the Resonance Characteristics of Resonant Tunneling DiodesJapanese Journal of Applied Physics, 1995
- Estimation of Phase Coherent Length of Hot Electrons in GaInAs Using Resonant Tunneling DiodesJapanese Journal of Applied Physics, 1994
- Simulation of quantum transport in quantum devices with spatially varying effective massIEEE Transactions on Electron Devices, 1991
- Boundary conditions for open quantum systems driven far from equilibriumReviews of Modern Physics, 1990
- Quantum transport equation for electric and magnetic fieldsPhysics Reports, 1987
- Weak-Coupling Theory of the Polaron Energy-Momentum RelationPhysical Review B, 1965
- On the Quantum Correction For Thermodynamic EquilibriumPhysical Review B, 1932