Geometric derivation of the Schrödinger equation from classical mechanics in curved Weyl spaces
- 15 January 1984
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review D
- Vol. 29 (2) , 216-222
- https://doi.org/10.1103/physrevd.29.216
Abstract
A theory physically equivalent to traditional nonrelativistic quantum mechanics is presented, in which both dynamical and probabilistic concepts enter in a classical way. Particle trajectories are deterministically governed by classical mechanics, only the initial position being at random. Quantum effects are supposed to arise from a modification of the geometry of space, due to the presence of matter. However, unlike gravitational forces, which are related to the metric of space-time, quantum-mechanical forces are proved to be related to the transplantation law of vectors. The resulting geometry of space, in the nonrelativistic limit, is found to be Weyl's geometry. Both particle motion and geometry of space are obtained from a unique averaged least-action principle.Keywords
This publication has 10 references indexed in Scilit:
- Dynamical Theories of Brownian MotionPublished by Walter de Gruyter GmbH ,1967
- Derivation of the Schrödinger Equation from Newtonian MechanicsPhysical Review B, 1966
- Theory of Hidden VariablesPhysical Review B, 1964
- Ableitung der quantenmechanischen Wellengleichung des Mehrteilchensystems aus einem klassischen ModellThe European Physical Journal A, 1953
- Ableitung der Quantentheorie aus einem klassischen, kausal determinierten ModellThe European Physical Journal A, 1953
- Ableitung der Quantentheorie aus einem klassischen Modell. IIThe European Physical Journal A, 1953
- Eine wahrscheinlichkeitstheoretische Begr ndung und Interpretation der QuantenmechanikThe European Physical Journal A, 1952
- A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. IPhysical Review B, 1952
- A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. IIPhysical Review B, 1952
- Über die Möglichkeit von SpinmodellenZeitschrift für Naturforschung A, 1950