Mean-Square Response of a Second-Order System to Nonstationary, Random Excitation

Abstract
The mean-square response of a lightly damped, second-order system to a type of non-stationary random excitation is determined. The forcing function on the system is taken in the form of a product of a well-defined, slowly varying envelope function and a noise function. The latter is assumed to be white or correlated as a narrow band process. Taking advantage of the slow variation of the envelope function and the small damping of the system, relatively simple integrals are obtained which approximate the mean-square response. Upper bounds on the mean-square response are also obtained.