Abstract
The notochord of amphibian anuran embryos contains catecholamines during the early developmental stages. In order to determine if these catecholamines are synthesized in situ, the development of their specific histofluorescence was investigated in the notochord alone or the notochord combined with the lateral somitic mesoderm, both explanted at the neurula stage and cultivated in vitro or implanted into the ventral part of early neurulae endoderm. The histofluorescence evolution, on the other hand, was investigated in the notochord alone or combined with myotomes, both explanted after the beginning of catecholamine biosynthesis and cultivated in vitro for one hour, in order to determine the effect of explantation and culture on the accumulation of notochordal catecholamines. The comparative study of catecholamine histofluorescence in these different samples shows that: the notochord is able to perform, on its own, the entire biosynthesis of the catecholamines stored in it during the early developmental stages. the catecholamines generated from isolated notochords tend to diffuse into the culture medium, probably due to a deficiency in the vesicular storage system usually found in the catecholamine-synthesizing cells. This loss of catecholamines in vitro can be obviated by the presence round the notochord of any embryonal tissue (somitic mesoderm, endoderm).