THE INTERACTION OF SILICON TETRAFLUORIDE WITH METHANOL

Abstract
Silicon tetrafluoride reacts with methanol in a 1:4 mole ratio, forming the complex SiF4.4CH3OH, which freezes to a glass at about −20° and is completely dissociated in the gaseous phase at 25°. Conductivity measurements show clearly that it is a very weak electrolyte in methanol solution. Its infrared spectrum does not contain an Si—O bond stretching absorption band. Proton magnetic resonance measurements provide strong evidence of hydrogen bonding between silicon tetrafluoride and methanol. These results indicate that the structure of the complex requires tetracovalent rather than hexacovalent silicon and strong hydrogen bonds between methanol and each of the four fluorine atoms.