Abstract
We consider a non-zero-sum game in which two searchers (player I and II) compete with each other for quicker detection of an object hidden in one of n boxes. Let p (q) be the prior location distribution of the object for player I (II). Exponential detection functions are assumed for both players. Each player wishes to maximize the probability that he detects the object before the opponent detects it. In the general case, a Nash equilibrium point is obtained in the form of a solution of simultaneous differential equations. In the case of p = q, we obtain an explicit solution showing the surprising result that both players have the same equilibrium strategy even though the detection rates are different.

This publication has 14 references indexed in Scilit: