Abstract
The origin and subsequent evolution of life on Earth have taken place within an environment where a 1g gravitational field is omnipresent. Living organisms, at whatever stage in their evolution, have accommodated this variable in both their structure and their function. Systems have also evolved whereby gravitational accelerations are perceived by gravisensors and these, in turn, have led to responses that give particular spatial orientations to living processes. It is proposed that, the higher the evolutionary status of an organism, the more likely it is that it will possess multiple systems for gravisensing because evolution discards little that assists fitness and hence supplements with new gravisensing systems those which already existed within evolutionary older, less complex organisms. Moreover, in comparison with a single gravisensing system, a multiplicity of systems permits gravity to participate in a wider range of developmental programmes, such as taxes, morphisms and tropisms, through the action of different sensory mechanisms coupled to distinct signalling and response pathways. Whatever the precise mechanism of graviperception in any given set of conditions, all may transduce the g‐forcc by means of a membrane system. Transduction may involve the endoplasmic rcticulum and thence the plasma membrane.