• preprint
    • Published in RePEc
Abstract
\Ve consider a discounter stochastic game of common-property capital accumulation with nonsymetric players. bounded Due-period extraction capacities, and a transition law satisfying a general strong convexity condition. We show that the infinite-horizon problem has a Markov-stationary (subgame-perfect) equilibrium and that every finite horizon transaction has a unique Markovian equilibrium, hoth in consumption functions which are continuous, non decreasing and have all slopes bounded above by 1. Unlike previous results in strategic dynamic models, these properties are reminiscent of the corresponding optimal growth model.
All Related Versions

This publication has 0 references indexed in Scilit: