Three-dimensional stability of elliptical vortex columns in external strain flows
- 15 April 1996
- journal article
- Published by The Royal Society in Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Vol. 354 (1709) , 895-926
- https://doi.org/10.1098/rsta.1996.0036
Abstract
The Kirchhoff-Kida family of elliptical vortex columns in flows with uniform strain and rotation displays a rich variety of dynamical behaviours, even in a purely two-dimensional setting. In this paper, we address the stability of these columns with respect to three-dimensional perturbations via the geometrical optics method. In the case when the external strain is equal to zero, the analysis reduces to the stability of a steady elliptical vortex in a rotating frame. When the external strain is non-zero, the stability analysis reduces to the theory of a Schrodinger equation with quasi-periodic potential. We present stability results for a variety of different Kirchhoff-Kida flows. The vortex columns are typically unstable except when the interior vorticity is approximately the negative of the background vorticity, so that the flow in the inertial frame is nearly a potential flow.Keywords
This publication has 45 references indexed in Scilit:
- The stability of three-dimensional time-periodic flows with spatially uniform strain ratesJournal of Fluid Mechanics, 1992
- The stability of elliptical vortices in an external straining flowJournal of Fluid Mechanics, 1990
- The stability of unbounded two- and three-dimensional flows subject to body forces: some exact solutionsJournal of Fluid Mechanics, 1989
- Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flowsPhysics of Fluids, 1988
- Three-Dimensional Instability of Elliptical FlowPhysical Review Letters, 1986
- Nonlinear stability analysis of stratified fluid equilibriaPhilosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1986
- Evolution of wavelike disturbances in shear flows : a class of exact solutions of the Navier-Stokes equationsProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1986
- A note on the instability of columnar vorticesJournal of Fluid Mechanics, 1984
- Mathematical Methods of Classical MechanicsPublished by Springer Nature ,1978
- Trigonometric Components of a Frequency-Modulated WaveProceedings of the IRE, 1948