Inhibition of Clathrin-Mediated Endocytosis Selectively Attenuates Specific Insulin Receptor Signal Transduction Pathways
- 1 July 1998
- journal article
- research article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 18 (7) , 3862-3870
- https://doi.org/10.1128/mcb.18.7.3862
Abstract
To examine the role of clathrin-dependent insulin receptor internalization in insulin-stimulated signal transduction events, we expressed a dominant-interfering mutant of dynamin (K44A/dynamin) by using a recombinant adenovirus in the H4IIE hepatoma and 3T3L1 adipocyte cell lines. Expression of K44A/dynamin inhibited endocytosis of the insulin receptor as determined by both cell surface radioligand binding and trypsin protection analysis. The inhibition of the insulin receptor endocytosis had no effect on either the extent of insulin receptor autophosphorylation or insulin receptor substrate 1 (IRS1) tyrosine phosphorylation. In contrast, expression of K44A/dynamin partially inhibited insulin-stimulated Shc tyrosine phosphorylation and activation of the mitogen-activated protein kinases ERK1 and -2. Although there was an approximately 50% decrease in the insulin-stimulated activation of the phosphatidylinositol 3-kinase associated with IRS1, insulin-stimulated Akt kinase phosphorylation and activation were unaffected. The expression of K44A/dynamin increased the basal rate of amino acid transport, which was additive with the effect of insulin but had no effect on the basal or insulin-stimulated DNA synthesis. In 3T3L1 adipocytes, expression of K44A/dynamin increased the basal rate of glucose uptake, glycogen synthesis, and lipogenesis without any significant effect on insulin stimulation. Together, these data demonstrate that the acute actions of insulin are largely independent of insulin receptor endocytosis and are initiated by activation of the plasma membrane-localized insulin receptor.Keywords
This publication has 83 references indexed in Scilit:
- Insulin Stimulates the Phosphorylation of the 66- and 52-Kilodalton Shc Isoforms by Distinct PathwaysEndocrinology, 1997
- Control of EGF Receptor Signaling by Clathrin-Mediated EndocytosisScience, 1996
- Dynamin GTPase, a force‐generating molecular switchBioEssays, 1996
- Dynamin, endocytosis and intracellular signalling (Review)Molecular Membrane Biology, 1996
- A target for phosphoinositide 3-kinase: Akt/PKBTrends in Biochemical Sciences, 1995
- The Appendage Domain of α-Adaptin Is a High Affinity Binding Site for DynaminJournal of Biological Chemistry, 1995
- The Amino Acid Sequence GPLY Is Not Necessary for Normal Endocytosis of the Human Insulin Receptor B IsoformBiochemical and Biophysical Research Communications, 1995
- The IRS-1 signaling systemTrends in Biochemical Sciences, 1994
- Two steps of insulin receptor internalization depend on different domains of the beta-subunit [published erratum appears in J Cell Biol 1993 Nov;123(4):1047]The Journal of cell biology, 1993
- Insulin receptors internalize by a rapid, saturable pathway requiring receptor autophosphorylation and an intact juxtamembrane region.The Journal of cell biology, 1991