Abstract
In Alzheimer's disease, beta-amyloid peptides (betaA(1-40) and betaA(1-42)) are deposited on the brain cell surfaces as neurotoxic plaques. Some reports indicate that small heat shock proteins, Hsp27 and alphaB-crystallin, colocalize in the plaques, but their functions are not known. Interaction between betaA and alphaB-crystallin must be determined in order to understand the role of alphaB-crystallin in betaA fibril formation. We used a pyrene (Pyr)-labeled betaA(1-40) in a fluorescence energy transfer experiment. Upon incubation together at 37 degrees C, energy transfer between Trp of alphaB-crystallin and Pyr of Pyr-labeled betaA was observed, indicating that betaA participated in subunit exchange of alphaB-crystallin, which promoted fibril formation.