Escape Peaks in X-Ray Diffractometry*
- 1 January 1964
- journal article
- Published by Cambridge University Press (CUP) in Advances in X-ray Analysis
- Vol. 8, 118-133
- https://doi.org/10.1154/s0376030800003037
Abstract
Escape peaks occur when the incident X-ray quantum, energy exceeds the absorption edge energy of the detector element and the resulting X-ray fluorescence is lost from the detector. The most common escape peaks result from 1 K-fluorescence in NaI-scintillation counters and Xe K-, Xe L-, and Kr K-fluorescence in proportional counters. The average pulse amplitude of the escape peak is proportional to the difference of the Energies of the incident and fluorescent X-rays. If the intensity of the escape peak is high as in the case of Mo Kα and a kryptoopreportional counter, and the lower level of the pulse height analyzer is raised to reject the escape peak, the quantum counting efficiency may be reduced by a factor of two. When the pulse height analyzer is set for characteristic incident radiation, escape peaks appear in powder patterns at small diffraction angles. These broad low-intensity peaks are often mistakenly identified as resulting from misalignment, scattering, etc. Each powder reflection can produce its own escape peak which occurs at an angle slightly smaller than the absorption edge of the detector element. In a silicon powder pattern the three strongest reflections produce three resolved escape peaks whose peak intensities are about 4% of their corresponding Cu Kα peaks when the X-ray tube is operated at 50 kV. The escape peak intensities decrease with decreasing X-ray tube voltage and disappear when the voltage is lower than the absorption edge energy of the detector element. Absorption edge peaks observed without the upper level of the pulse height analyzer are similar in appearance, intensity, and diffraction angle to the escape peaks. In complex powder patterns the escape peak pattern is unresolved and may produce a number of very broad peaks.Keywords
This publication has 4 references indexed in Scilit:
- Precision measurement of lattice parameters of polycrystalline specimens. Erratum in theInternational Tables for X-ray CrystallographyActa Crystallographica, 1961
- Use of Counter Tubes in X-Ray AnalysisReview of Scientific Instruments, 1956
- Absorption and Counting-Efficiency Data for X-Ray DetectorsReview of Scientific Instruments, 1955
- Moseley's Law Applied to Proportional Counter Resolution of Adjacent ElementsPhysical Review B, 1954