Loss increase for optical fibers exposed to hydrogen atmosphere

Abstract
Loss spectrum changes for optical fibers exposed to a hydrogen atmosphere in the 15-200\deg C temperature range are measured. Loss increase due to molecular hydrogen dissolved into fibers is investigated from the loss peak at 1.24 μm, and that due to hydroxyl group formation from the loss peak at 1.41 μm. The loss increase due to molecular hydrogen is fully explained by physical solubility theory and diffusion equation. The empirical formula for time, temperature, and hydrogen-pressure dependences of the loss increase due to hydroxyl group formation is evaluated from the experimental results. The loss increase at 1.3- and 1.5-μm wavelength band at room temperature are estimated.