The Stability of Relativistic Neutron Stars in Binary Orbit

Abstract
We analyze the stability of relativistic, quasi-equilibrium binary neutron stars in synchronous circular orbit. We explore stability against radial collapse to black holes prior to merger, and against orbital plunge. We apply theorems based on turning points along uniformly rotating sequences of constant angular momentum and rest mass to locate the onset of secular instabilities. We find that inspiraling binary neutron stars are stable against radial collapse to black holes all the way down to the innermost stable circular orbit.