Metallothionein Expression in Animals: A Physiological Perspective on Function

Top Cited Papers
Open Access
Abstract
An integration of knowledge concerning regulation of metallothionein expression with research on metallothionein's proposed functions is necessary to delineate how this metalloprotein affects cellular processes, especially zinc metabolism. Metallothionein expression is driven by a number of physiological mediators through several response elements in the metallothionein gene promoter. Cellular accumulation of metallothionein depends on both gene expression and protein degradation. Both depend largely on availability of cellular zinc derived from the dietary zinc supply. Metallothionein expression is related to zinc accumulation in certain organs. Evidence has been produced, which suggests that metallothionein could act in a number of biochemical processes. It may act in zinc trafficking and/or zinc donation to apoproteins, including zinc finger proteins that act in cellular signaling and transcriptional regulation. As a result, metallothionein expression may affect a number of cellular processes including gene expression, apoptosis, proliferation and differentiation. The ability of metallothionein to exchange other metals with zinc in these proteins may explain a role in metal toxicity. Similarly, mobilization of zinc from metallothionein by oxidative stresses may explain its proposed antioxidant function. Apparent good health of metallothionein-deficient mice argues against a critical biological role for metallothionein; however, expression may be critical in times of stress.