Abstract
Lorber's concept of net analyte signal is reviewed in the context of classical and inverse least-squares approaches to multivariate calibration. It is shown that, in the presence of device measurement error, the classical and inverse calibration procedures have radically different theoretical prediction objectives, and the assertion that the popular inverse least-squares procedures (including partial least squares, principal components regression) approximate Lorber's net analyte signal vector in the limit is disproved. Exact theoretical expressions for the prediction error bias, variance, and mean-squared error are given under general measurement error conditions, which reinforce the very discrepant behavior between these two predictive approaches, and Lorber's net analyte signal theory. Implications for multivariate figures of merit and numerous recently proposed preprocessing treatments involving orthogonal projections are also discussed.